Simple model for the deformation-induced relaxation of glassy polymers.

نویسندگان

  • S M Fielding
  • R G Larson
  • M E Cates
چکیده

Glassy polymers show "strain hardening": at constant extensional load, their flow first accelerates, then arrests. Recent experiments have found this to be accompanied by a striking and unexplained dip in the segmental relaxation time. Here we explain such behavior by combining a minimal model of flow-induced liquefaction of a glass with a description of the stress carried by strained polymers, creating a nonfactorable interplay between aging and strain-induced rejuvenation. Under constant load, liquefaction of segmental motion permits strong flow that creates polymer-borne stress. This slows the deformation enough for the segmental modes to revitrify, causing strain hardening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening.

A simple theory for glassy-polymeric mechanical response that accounts for large-scale chain relaxation is presented. It captures the crossover from perfect-plastic response to Gaussian strain hardening as the degree of polymerization N increases, without invoking entanglements. By relating hardening to interactions on the scale of monomers and chain segments, we correctly predict its magnitude...

متن کامل

Time scales and mechanisms of relaxation in the energy landscape of polymer glass under deformation: direct atomistic modeling.

Molecular-dynamics simulation is used to explore the influence of thermal and mechanical history of typical glassy polymers on their deformation. Polymer stress-strain and energy-strain developments have been followed for different deformation velocities, also in closed extension-recompression loops. The latter simulate for the first time the experimentally observed mechanical rejuvenation and ...

متن کامل

Modeling the relaxation of polymer glasses under shear and elongational loads.

Glassy polymers show "strain hardening": at constant extensional load, their flow first accelerates, then arrests. Recent experiments under such loading have found this to be accompanied by a striking dip in the segmental relaxation time. This can be explained by a minimal nonfactorable model combining flow-induced melting of a glass with the buildup of stress carried by strained polymers. With...

متن کامل

Structural relaxation of spin-cast glassy polymer thin films as a possible factor in dewetting.

Reiter has recently reported a situation in which the dewetting of quasi-solid films is linked to plastic deformation--rather than viscous flow--resulting from capillary forces. Herein we propose that, in thin films of some glassy polymers--especially poly(methyl methacrylate) (PMMA)--prepared by spin-casting from solvent, structural relaxation might impart sufficient stress to cause plastic de...

متن کامل

Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations.

We combine molecular dynamics simulations of deformation at the submicron scale with a simple continuum fracture mechanics model for the onset of crack propagation to calculate the macroscopic fracture energy of amorphous glassy polymers. Key ingredients in this multiscale approach are the elastic properties of polymer crazes and the stress at which craze fibrils fail through chain pullout or s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 108 4  شماره 

صفحات  -

تاریخ انتشار 2012